RTI Module Plans # **RTI Modules** ### RTI = Bump bonding vendor in North Carolina, USA - 6 quads, 6 singles per wafer - Micron 6" wafer spring 2016 - 300 μm, no thinning - FEI4 - Plan: Test beam and irradiation measurements Tested by Matt Zhang # RTI Modules #### **US ATLAS ITK Pixel Twiki:** ## https://twiki.cern.ch/twiki/bin/view/USatlasITKpixel/WebHome - Please send me comments or edit the twiki page directly - Please add categories as needed ### Welcome to the USatlasITKpixel web #### **RTI Modules** Bump bonding of planar sensors with FEI4 for validation of RTI as a vendor. Spring-summer 2016 #### Module Information: - Micron sensors on 6" wafers from processed spring 2016 - 300 µm thick, no thinning - FEI4 The first batch of bump bond modules had many shorts. The measured bump size was 40 microns, reduced to 12 microns in second batch. | | Module # | type | FE | sensor
type | good
module | Location | Status | Irradiated | Last
Updated | Comments | |-------------|--------------------------|----------------|------|------------------|----------------|-----------|-----------------|------------|-----------------|------------------------| | Batch
1: | FEI4_RTI_2016_A001-
S | single
chip | FEI4 | Micron
planar | no | RTI/LBNL? | sent for rework | no | 2/8/17 | bump size
too large | | | FEI4_RTI_2016_A001-
S | single
chip | FEI4 | Micron
planar | no | RTI/LBNL? | sent for rework | no | 2/8/17 | bump size
too large | | | FEI4_RTI_2016_A002-
S | single
chip | FEI4 | Micron
planar | no | RTI/LBNL? | sent for rework | no | 2/8/17 | bump size
too large | | | FEI4_RTI_2016_A003-
S | single
chip | FEI4 | Micron
planar | no | RTI/LBNL? | | no | 2/8/17 | bump size
too large | | | FEI4_RTI_2016_A004-
S | single
chip | FEI4 | Micron
planar | no | RTI/LBNL? | | no | 2/8/17 | bump size
too large | # RTI Module Plans ### Proposal to discuss #### Test beam: - 6 single chip cards - 6 quads? - Still testing quad flex cable Irradiations (Qualify to 4,000 fb⁻¹): - 4 single chip cards (quad modules if ready in time) - 2 with neutrons - What fluences? 5e15, 2e16 1 MeV n_{eq}/cm² - 2 with gammas - What doses? 100 Mrad, 1 Grad - Or maybe we only want to irradiate 1 of each to save for later? | Batch
2: | FEI4_RTI_2016_B001-S | single
chip | FEI4 | Micron
planar | yes | SLAC | mounted on SCC, used in test beam fall 2016 | no | 2/8/17 | |-------------|--------------------------|----------------|------|------------------|-----|------|---|----|--------| | | FEI4_RTI_2016_B002-
S | single
chip | FEI4 | Micron
planar | yes | SLAC | mounted on SCC, used in test beam fall 2016 | no | 2/8/17 | | | FEI4_RTI_2016_B003-
S | single
chip | FEI4 | Micron
planar | yes | ANL | mounted on SCC, tested | no | 2/8/17 | | | FEI4_RTI_2016_B004-S | single
chip | FEI4 | Micron
planar | yes | UCSC | ? | no | 2/8/17 | | | FEI4_RTI_2016_B005-S | single
chip | FEI4 | Micron
planar | yes | LBNL | ? | no | 2/8/17 | | | FEI4_RTI_2016_B006-S | single
chip | FEI4 | Micron
planar | yes | LBNL | ? | no | 2/8/17 | ## **Test Beam** Fermilab Test Beam Facility: February 22 to April 25 (9 weeks) Coordinating with U. Geneva, M. Benoit #### Beam: - 120 GeV protons; 8-60 GeV pions; 1-32 GeV pions; kaons, electrons, muons - Rate ~100kHz - 4.2 s spill every minute - 300k-500k particles per batch - Spot size ~1 cm ### Telescope: - U. Geneva FEI4 telescope - **HSIO1** readout - 6 planes of Si sensors - Trigger rate 6-18 kHz - Remote controlled scanning stage - **DUT** cooling #### **Devices:** - **HVCMOS H35demo** - RTI modules Others are welcome to join the test beam # **Argonne Facilities: Irradiations** ### Irradiations @ Argonne: - Nominally planned March 13-17 - Test modules in test beam before and after irradiation ### Argonne Low Energy Accelerator Facility (LEAF) - 55 MeV electron beam - Neutron Irradiations - Photoneutron source - Peak energy 0.3-0.5 MeV u to 1 MeV - Flux up to 8 x 10¹¹ n/cm² s - Plan: lead-boron shield for thermal neutrons, gammas - Gamma Irradiations - range of 1-3 MeV # **Argonne Facilities: SEU Testing** ### Argonne Tandem Linac Accelerator System (ATLAS) - User facility: https://www.phy.anl.gov/atlas/facility/index.html - Very good range for SEU testing - Heavy ion accelerator - Essentially all stable isotopes from hydrogen to uranium are available - Energies up to 17 MeV per nucleon (2.2 GeV for Uranium) | lon ^a | Maximum
Energy (Mev)
for Areas III,IV* | Maximum Current at Maximum Energy (pna) | Beam Current at
Energy of 6 MeV/u
(pnA) | |-------------------------------|--|---|---| | ⁷ Li | 140 | 100 ^c | 200 ^c | | ¹⁰ Bb,c | 200 | 100 | 100 | | ¹² C ^b | 241 | 1000 ^c | >1000 ^c | | ¹⁴ N | 244 | 800 ^c | >1000 ^c | | ¹⁶ O ^b | 320 | >1000 ^c | >1000 ^c | | ¹⁹ F | 334 | 10 | 50 | | ²⁰ Ne | 350 | 1000 | >1000 ^c | | ²⁴ Mg | 415 | 2 | 10 | | ²⁷ Al | 464 | 10 | 30 | | ²⁸ Si ^b | 476 | 100 | >1000 | | ³² S ^b | 539 | 100 | 1000 | | ³⁵ CI | 585 | 12 | 35 | | ⁴⁰ Ar ^b | 660 | 1000 | >1000 | | ⁴⁰ Ca ^b | 660 | 200 | >1000 | | ⁴⁸ Ti ^b | 778 | 40 | 300 | | 51 _V | 816 | 0.5 | 2 | | ⁵² Cr | 832 | 10 | 40 | | ⁵⁶ Fe ^b | 882 | 50 | 400 | | ⁵⁹ Co | 920 | 10 | 50 | |--------------------------------|------|-----|--------| | 58Nib | 911 | 20 | 100 | | ⁶³ Cu | 977 | 20 | 100 | | ⁶⁴ Zn | 979 | 4 | 20 | | ⁷⁴ Ge ^b | 1103 | 2 | 10 | | ⁸⁰ Se | 1160 | 2 | 10 | | ⁷⁹ Br | 1150 | 2 | 10 | | ⁸⁴ Kr ^b | 1201 | 500 | > 1000 | | ⁹⁰ Zr ^b | 1260 | 140 | 300 | | ⁹⁸ Mo ^b | 1343 | 1.5 | 7 | | ¹⁰² Ru ^b | 1377 | 3 | 12 | | ¹⁰⁷ Ag | 1418 | 10 | 50 | | ¹²⁰ Sn ^b | 1512 | 2 | 10 | | ¹³⁰ Te ^b | 1593 | 2 | 10 | | ¹³² Xe ^b | 1597 | 30 | 150 | | ¹³³ Cs ^b | 1603 | 20 | 100 | | ¹⁸⁰ Hf | 1881 | 2 | 10 | | ¹⁹⁷ Au | 1950 | 10 | 50 | | ²⁰⁸ Pb ^b | 1997 | 20 | 200 | | ²⁰⁹ Bi ^b | 1996 | 20 | 50 | | 238 _U | 2190 | 20 | 40 | # **Plans** ## Proposal: - Test all 6 RTI singles in test beam, irradiate 2-4 samples, return to test beam - Test quad modules if there is enough time - Test beam scheduled for February 22 to April 25 - All are welcome to join for all or part, please let me know - Irradiations with neutrons and gammas - If you have other samples to add to the irradiation, please let me know Backup